21 research outputs found

    Learning detectors quickly using structured covariance matrices

    Full text link
    Computer vision is increasingly becoming interested in the rapid estimation of object detectors. Canonical hard negative mining strategies are slow as they require multiple passes of the large negative training set. Recent work has demonstrated that if the distribution of negative examples is assumed to be stationary, then Linear Discriminant Analysis (LDA) can learn comparable detectors without ever revisiting the negative set. Even with this insight, however, the time to learn a single object detector can still be on the order of tens of seconds on a modern desktop computer. This paper proposes to leverage the resulting structured covariance matrix to obtain detectors with identical performance in orders of magnitude less time and memory. We elucidate an important connection to the correlation filter literature, demonstrating that these can also be trained without ever revisiting the negative set

    Staple: Complementary Learners for Real-Time Tracking

    Full text link
    Correlation Filter-based trackers have recently achieved excellent performance, showing great robustness to challenging situations exhibiting motion blur and illumination changes. However, since the model that they learn depends strongly on the spatial layout of the tracked object, they are notoriously sensitive to deformation. Models based on colour statistics have complementary traits: they cope well with variation in shape, but suffer when illumination is not consistent throughout a sequence. Moreover, colour distributions alone can be insufficiently discriminative. In this paper, we show that a simple tracker combining complementary cues in a ridge regression framework can operate faster than 80 FPS and outperform not only all entries in the popular VOT14 competition, but also recent and far more sophisticated trackers according to multiple benchmarks.Comment: To appear in CVPR 201

    On progressive sharpening, flat minima and generalisation

    Full text link
    We present a new approach to understanding the relationship between loss curvature and input-output model behaviour in deep learning. Specifically, we use existing empirical analyses of the spectrum of deep network loss Hessians to ground an ansatz tying together the loss Hessian and the input-output Jacobian of a deep neural network over training samples throughout training. We then prove a series of theoretical results which quantify the degree to which the input-output Jacobian of a model approximates its Lipschitz norm over a data distribution, and deduce a novel generalisation bound in terms of the empirical Jacobian. We use our ansatz, together with our theoretical results, to give a new account of the recently observed progressive sharpening phenomenon, as well as the generalisation properties of flat minima. Experimental evidence is provided to validate our claims

    End-to-end representation learning for Correlation Filter based tracking

    Full text link
    The Correlation Filter is an algorithm that trains a linear template to discriminate between images and their translations. It is well suited to object tracking because its formulation in the Fourier domain provides a fast solution, enabling the detector to be re-trained once per frame. Previous works that use the Correlation Filter, however, have adopted features that were either manually designed or trained for a different task. This work is the first to overcome this limitation by interpreting the Correlation Filter learner, which has a closed-form solution, as a differentiable layer in a deep neural network. This enables learning deep features that are tightly coupled to the Correlation Filter. Experiments illustrate that our method has the important practical benefit of allowing lightweight architectures to achieve state-of-the-art performance at high framerates.Comment: To appear at CVPR 201

    Learning feed-forward one-shot learners

    Full text link
    One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a second deep network, called a learnet, which predicts the parameters of a pupil network from a single exemplar. In this manner we obtain an efficient feed-forward one-shot learner, trained end-to-end by minimizing a one-shot classification objective in a learning to learn formulation. In order to make the construction feasible, we propose a number of factorizations of the parameters of the pupil network. We demonstrate encouraging results by learning characters from single exemplars in Omniglot, and by tracking visual objects from a single initial exemplar in the Visual Object Tracking benchmark.Comment: The first three authors contributed equally, and are listed in alphabetical orde

    Devon: Deformable Volume Network for Learning Optical Flow

    Full text link
    State-of-the-art neural network models estimate large displacement optical flow in multi-resolution and use warping to propagate the estimation between two resolutions. Despite their impressive results, it is known that there are two problems with the approach. First, the multi-resolution estimation of optical flow fails in situations where small objects move fast. Second, warping creates artifacts when occlusion or dis-occlusion happens. In this paper, we propose a new neural network module, Deformable Cost Volume, which alleviates the two problems. Based on this module, we designed the Deformable Volume Network (Devon) which can estimate multi-scale optical flow in a single high resolution. Experiments show Devon is more suitable in handling small objects moving fast and achieves comparable results to the state-of-the-art methods in public benchmarks

    Learning feed-forward one-shot learners

    Get PDF
    Abstract One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a second deep network, called a learnet, which predicts the parameters of a pupil network from a single exemplar. In this manner we obtain an efficient feed-forward one-shot learner, trained end-to-end by minimizing a one-shot classification objective in a learning to learn formulation. In order to make the construction feasible, we propose a number of factorizations of the parameters of the pupil network. We demonstrate encouraging results by learning characters from single exemplars in Omniglot, and by tracking visual objects from a single initial exemplar in the Visual Object Tracking benchmark

    Long-Term Visual Object Tracking Benchmark

    Full text link
    We propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for single object tracking. The dataset consists of 50 HD videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and train better deep learning architectures (avoiding/reducing augmentation, which may not reflect real world behaviour). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further present thorough qualitative and quantitative evaluation highlighting the importance of long term aspect of tracking. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long-term tracking.Comment: ACCV 2018 (Oral

    Dense Feature Aggregation and Pruning for RGBT Tracking

    Full text link
    How to perform effective information fusion of different modalities is a core factor in boosting the performance of RGBT tracking. This paper presents a novel deep fusion algorithm based on the representations from an end-to-end trained convolutional neural network. To deploy the complementarity of features of all layers, we propose a recursive strategy to densely aggregate these features that yield robust representations of target objects in each modality. In different modalities, we propose to prune the densely aggregated features of all modalities in a collaborative way. In a specific, we employ the operations of global average pooling and weighted random selection to perform channel scoring and selection, which could remove redundant and noisy features to achieve more robust feature representation. Experimental results on two RGBT tracking benchmark datasets suggest that our tracker achieves clear state-of-the-art against other RGB and RGBT tracking methods.Comment: arXiv admin note: text overlap with arXiv:1811.0985
    corecore